Monitoring the Plant Density of Cotton with Remotely Sensed Data
نویسندگان
چکیده
PDC (Plant Density of Cotton) was an essential parameter for estimating the cotton yield and developing the zone-management measurements. This paper proposed a new method to retrieve PDC from the satellite remote sensing data. The thirteen fields of Xinjiang Production and Construction Corps (XPCC) (total 630 hm) were selected as the study area, where the sowing date, emergence date, and PDC were investigated. Based on the investigation data the linear models to estimate PDC are established using EVI and DEVI respectively. The results indicated that the difference of seedling size caused by the emergence time decreased the estimation accuracy of PDC. To improve the estimation accuracy the partition functions were established in terms of sowing date. DEVI is capable of reducing the influence of soil background significantly and it can bring the monitoring time forward from June 9 to May 24 in this research. The results indicated that the optimal time monitoring PDC would be from squaring to full-flowering of cotton growing period. A demonstration to monitor PDC was taken on June 9 in the 148 farm of XPCC. It can be concluded that the emergence time and the non-cotton background were the main factors affecting the monitoring accuracy of PDC, and the partition function with the emergence time could improve the estimation accuracy, and DEVI could make the monitoring time forward, and the optimal monitoring time was from the squaring stage to the full-flowering stage. This research provides an efficient, rapid and intact way to monitor PDC, and it is significant for operational application at a regional scale.
منابع مشابه
Spatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملCoastal water quality assessment based on the remotely sensed water quality index using time series of satellite images
This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavymetals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کامل